云知声基金有哪些(云知声概念股有哪些)

jijinwang

“当前我们正处于 5G 爆发的边缘,5G 与人工智能的结合将真正促使万物智联(AIoT)的落地与实现。可以预见的是,未来巨量的多维数据,如语音、图像、视频等,集中处理与边缘式分布计算的需求,势必将进一步挑战 AI 底层支持硬件——芯片的计算能力。”云知声创始人兼CEO 黄伟预测道。

1月2日,云知声在京召开新闻发布会,正式公布了其多模态 AI 芯片战略与规划。

会上同步曝光了其正在研发中的多款定位不同场景的 AI芯片。

多模态:物联网 AI 芯片的进化三趋势

在第一代 UniOne 芯片雨燕的发布会上,云知声联合创始人李霄寒曾指出, UniOne 并不是一颗芯片,而是一系列芯片,代表了云知声对于物联网 AI 芯片发展战略的整体构想。

在今日举行的云知声 2019 多模态 AI 芯片战略发布会上,李霄寒再次从三方面论证了物联网多模态 AI 芯片的必要性。他认为,当前物联网产品线的 AI 芯片越来越明显地体现出三个趋势:

首先是场景化。芯片设计正在由原来的片面追求 PPA ,即性能(Power)、功耗(Performance)和面积(Area)逐渐演变成基于软硬一体,甚至包括云端服务的方式来解决某个垂直领域的具体问题,芯片本身上升成为整个解决方案中的重要部分,而非唯一。

其次是端云互动。在物联网的不同应用场景下,海量终端设备要实现功能智能化必须端云配合,即形成边缘算力和云端算力的动态平衡。端云互动的命题需要 AI 芯片的强有力支持,进一步也深刻影响到芯片的设计,以及最终的交付。

再者,数据多模态。在以 5G 驱动的万物智联场景下,芯片所接触到的数据维度将由原来的单一化走向多元化,芯片所需处理的数据也由单模态变成多模态,这对芯片尤其是物联网人工智能芯片的设计提出了新的挑战。

结合以上三点,李霄寒认为,物联网 AI 芯片的最终呈现形式将不再是一个单一的硬件,而必然是承载着边缘能力与云端能力的多模态 AI 软硬一体解决方案。

战略布局:多模态 AI 芯片技术发展可期

为实现多模态 AI 芯片的战略落地,目前云知声已在加速技术布局,并在机器视觉方面取得飞速进展。

其中,面向机器视觉的轻量级图像信号处理器已可实现在不依赖外部内存的情况下,在 30 fps 的速率下实时对传感器的图片进行预处理,以进一步提高后续机器视觉处理模块的处理速度和效果。

借助基于人脸信息分析的多模态技术,已可实现人脸/物体识别、表情分析、标签化、唇动状态跟踪等功能,可为产品交互和用户体验提供更多的可玩性和灵活性。

尤为值得一提的是,云知声多模态人工智能核心 IP——DeepNet2.0 的发布,标志着云知声人工智能处理核心由 1.0 语音时代全面迈入 2.0 融合语音、图像等处理能力的多模态时代。

目前云知声 DeepNet2.0 已在 FPGA 上得到验证,将在 2019 年落地的全新多模态 AI 芯片海豚(Dolphin)上落地。

除此之外,在图像与芯片技术的产学研合作方面,云知声还与杜克大学所领导的美国自然科学基金旗下唯一人工智能计算中心——ASIC 达成深度合作,致力于 AI 芯片算法压缩与量化技术,以及非冯新型 AI 芯片计算架构研究,将进一步为云知声多模态 AI 芯片战略的推进夯实基础。

三款在研芯片2019 年启动量产

去年 5 月16 日,云知声正式发布了旗下耗时近三年自主研发打造的首款物联网 AI 芯片雨燕。该芯片采用云知声自主 AI 指令集,拥有具备完整自主知识产权的 数字信号处理器,性能较通用方案提升超 50 倍。

发布芯片后仅四个月,云知声便选择将基于雨燕的解决方案进行开源,于去年 9 月正式推出智能家居、智能音箱的两套标杆解决方案。

目前,基于雨燕芯片的全栈解决方案已导入的各类方案商及合作伙伴已超过 10 家,包括美的、奥克斯、海信、京东、360、中国平安、硬蛋科技等,相关产品最早将于Q1 量产上市。

在雨燕已有大批客户导入,占领市场先发优势的背景下,2019 年云知声在芯片落地规划方面仍将保持积极态度。

李霄寒透露,在持续迭代升级现有雨燕芯片的性能与服务之外,目前云知声多款面向不同方向的芯片也已在研发中。

其中,包括适用性更广的超轻量级物联网语音 AI 芯片雨燕 Lite,、多模态 AI 芯片海豚,以及与吉利集团旗下生态链企业亿咖通科技共同打造的面向智慧出行场景的多模态车规级 AI 芯片雪豹(Leopard)。

以上三款芯片计划于 2019 年启动量产。

依托在家居、车载等真实场景下丰富的产品经验,以及具备先发优势的 AI 芯片能力,云知声将业务覆盖到包括智能家居、智能汽车、智能儿童机器人、智慧酒店、智慧交通等诸多场景。未来云知声将持续发力多模态 AI 芯片,不断拓展技术与场景生态,以实现面向未来 AIoT 时代的全面赋能。